Dijkstra算法

2023/08/27

一根扯紧的绳子,每一段都应该是扯紧的。

两点之间的最短路径,其中每一段都应该是最短的。例如,A-X-Z是最短路径(AX:1, XZ:1, AZ:3)。A到X是最短的;A经过X再到Z是所有起点为A终点为Z中最短的(比A到Z短);X到Z是最短的。

用Dynamic Programming的思想求解,从局部最优开始搜索优化。

代码实现:

# the shortest path

def dijkstra(nodes, edges, source_index=0):
    """
        nodes (list): list of nodes
        edges (dict): {(node, node): distance}
        source_index (int, optional): souce node
        return (dict): the shortest distance from source
    """
    path_length = {v: float('inf') for v in nodes}
    path_length[source_index] = 0

    adjacent_nodes = {v: {} for v in nodes}
    for (u, v), w_uv in edges.items():
        adjacent_nodes[u][v] = w_uv
        adjacent_nodes[v][u] = w_uv

    temporary_nodes = [v for v in nodes]
    while len(temporary_nodes) > 0:
        upper_bound = {v: path_length[v] for v in temporary_nodes}
        u = min(upper_bound, key=upper_bound.get)

        temporary_nodes.remove(u)

        for v, w_uv in adjacent_nodes[u].items():
            path_length[v] = min(path_length[v], path_length[u] + w_uv)
    return path_length


nodes = [0, 1, 2, 3, 4, 5]
edges = {(0, 1): 1, (0, 2): 1.5, (0, 3): 2, (1, 3): 0.5, (1, 4): 2.5, (2, 3): 1.5, (3, 5): 1}
shortest_path = dijkstra(nodes, edges, source_index=0)
print(shortest_path)

Reference

Dijkstra’s Algorithm - Dynamic Programming Algorithms in Python (Part 2)